
National Aeronautics and
Space Administration

NOT MEASUREMENT
SENSITIVE

SOFTWARE
SAFETY

NASA TECHNICAL STANDARD

NASA-STD-8719.13A
SEPTEMBER 15, 1997

REPLACES NSS 1740.13 DATED FEBRUARY 1996

NASA-STD-8719.13A

i

PREFACE

This standard provides a methodology for software safety in NASA programs. It describes the
activities necessary to ensure that safety is designed into software that is acquired or developed
by NASA. All Program/Project Managers are to assess the inherent safety risk of the software in
their individual programs and are encouraged to tailor their software safety activity accordingly
within the framework of this standard.

This standard expands on the requirements of NMI 2410.10, "NASA Software Management
Assurance and Engineering Policy," NHB 1700.1(V1), "NASA Safety Policy and Requirements
Document@; and NASA-STD-2201-93, "Software Assurance Standard."

If a mandatory (shall, will, must) requirement cannot be met, a deviation/waiver package shall be
prepared according to NHB 1700.1 (V1). NASA deviations/waivers to requirements in this
document shall be approved, as a minimum, by the Installation or program safety official. The
Office of Safety and Mission Assurance shall be notified semiannually of all variances to safety
requirements contained in this standard and approved at the Installation or program levels.

Comments and questions concerning the contents of this publication should be referred to the
National Aeronautics and Space Administration Headquarters, Director, Safety and Risk
Management Division, Office of the Associate Administrator for Safety and Mission Assurance,
Washington, DC 20546.

Original Signed By

Frederick Gregory ())(&7,9(�'$7(����
Associate Administrator for Feb 12, 1996
 Safety and Mission Assurance

NASA-STD-8719.13A

ii

This page intentionally left blank.

NASA-STD-8719.13A

iii

RECORD OF CHANGES

Change
No.

Date Title or Brief Description Entered
By

Date
Entered

1 9/97 Headquarters documentation numbering White 9/10/97

2 9/97 Paragraph 3.1(e); assess scope and level of IV&V White 9/10/97

NASA-STD-8719.13A

iv

This page intentionally left blank.

NASA-STD-8719.13A

v

TABLE OF CONTENTS

1.0 INTRODUCTION... 1
1.1 SCOPE .. 1
1.2 PURPOSE ... 1
1.3 APPLICABILITY ... 1

1.3.1 GOVERNMENT FURNISHED EQUIPMENT (GFE), REUSED,
AND PURCHASED SOFTWARE... 1

1.3.2 FIRMWARE ... 1
1.4 TAILORING ... 1

2.0 REFERENCES.. 3
2.1 REFERENCED DOCUMENTS ... 3

2.2 GLOSSARY.. 3
2.3 ABBREVIATIONS AND ACRONYMS ... 3

3.0 REQUIREMENTS.. 5
3.1 GENERAL .. 5
3.2 SYSTEM SAFETY ANALYSES ... 5
3.3 SOFTWARE SAFETY ... 6

3.3.1 SOFTWARE SAFETY TASKS BY LIFE CYCLE PHASE.................... 6
3.3.1.1 SOFTWARE SAFETY PLANNING................................ 7
3.3.1.2 SOFTWARE REQUIREMENTS SPECIFICATION

DEVELOPMENT ... 7
3.3.1.3 SOFTWARE ARCHITECTURAL DESIGN 8
3.3.1.4 SOFTWARE DETAILED DESIGN................................. 8
3.3.1.5 SOFTWARE IMPLEMENTATION................................. 9
3.3.1.6 SOFTWARE INTEGRATION AND

ACCEPTANCE TESTING... 9
3.3.1.7 SOFTWARE OPERATIONS AND

MAINTENANCE.. 9
3.3.2 PHASE INDEPENDENT TASKS.. 9

3.3.2.1 SAFETY REQUIREMENTS TRACEABILITY............ 10
3.3.2.2 DISCREPANCY REPORTING AND TRACKING 10
3.3.2.3 SOFTWARE CHANGE CONTROL.............................. 10
3.3.2.4 SAFETY PROGRAM REVIEWS 10

3.4 SOFTWARE SAFETY ANALYSIS .. 10
3.4.1 SOFTWARE SAFETY REQUIREMENTS ANALYSIS....................... 10

... 11
3.4.2 SOFTWARE SAFETY ARCHITECTURAL DESIGN

ANALYSIS ... 11
3.4.3 SOFTWARE SAFETY DETAILED DESIGN ANALYSIS 11
3.4.4 CODE SAFETY ANALYSIS ... 12
3.4.5 SOFTWARE TEST SAFETY ANALYSIS.. 13
3.4.6 SOFTWARE CHANGE ANALYSIS... 13

4.0 QUALITY ASSURANCE PROVISIONS.. 15

5.0 PACKAGING ... 17

NASA-STD-8719.13A

vi

6.0 ADDITIONAL INFORMATION ... 19

GLOSSARY.. A-1

ABBREVIATIONS AND ACRONYMS ... B-1

NASA-STD-8719.13A

1

1.0 INTRODUCTION

1.1 SCOPE

This standard provides a methodology for software safety in NASA programs.

1.2 PURPOSE

The purpose of this standard is to provide requirements to implement a systematic approach to
software safety as an integral part of the overall system safety programs. It describes the
activities necessary to ensure that safety is designed into software that is acquired or developed
by NASA and that safety is maintained throughout the software life cycle.

1.3 APPLICABILITY

This standard is appropriate for application to software acquired or developed by NASA that is
used as a part of a system that possesses the potential of directly or indirectly causing harm to
humans or damage to property external to the system. When software is acquired by NASA, this
standard applies to the level specified in contract clauses or memoranda of understanding. When
software is developed by NASA, this standard applies to the level specified in the program plan,
software management plan, or other controlling document.

This standard is intended to be applied only to specific software elements identified by a system
hazard analysis as that software which could cause or contribute to the system reaching a specific
hazardous state; or which is intended to detect or take corrective action if the system reaches a
specific hazardous state; or which is intended to mitigate damage if an accident occurs.

1.3.1 GOVERNMENT FURNISHED EQUIPMENT (GFE), REUSED, AND
PURCHASED SOFTWARE

For systems where use of this standard is required, it shall be applied to government furnished
software, purchased software (including commercial-off-the-shelf (COTS) software), and any
other reused software in the system. In the event that some of the analyses required by this
document are not feasible due to the nature of the software and documentation, the developer is
responsible for securing a waiver from the NASA acquirer of the system.

1.3.2 FIRMWARE

For the purpose of this standard, firmware shall be treated as software.

1.4 TAILORING
Tailoring of this standards requirements is to be done by program/project/task management in
consultation with each respective NASA Centers Safety and Mission Assurance organization.
The tailoring effort shall include definition of the acceptable level of risk, which software is to be
considered safety-critical, and whether the level of safety risk associated with the software
requires formal safety certification.

NASA-STD-8719.13A

2

This page intentionally left blank.

NASA-STD-8719.13A

3

2.0 REFERENCES

2.1 REFERENCED DOCUMENTS

The following references were used in the generation of this Standard.

NASA Software Acquisition Life Cycle, SMAP/Version
4.0, 1989

DoD-STD-2167A Military Standard, Defense System Software Development,
February 29, 1988

MIL-STD-882B, System Safety Program Requirements, July 1, 1987
NOTICE 1

MIL-STD-882C System Safety Program Requirements, January 19, 1993

NASA-GB-A302 Software Formal Inspections Guidebook, August 1993

NASA-STD-2100-91 NASA Software Documentation Standard Software
Engineering Program, July 29, 1991

NASA-STD-2201-93 Software Assurance Standard, November 10, 1992

NASA-STD-2202-93 Software Inspection Standard, April 1993

NHB 1700.1(V1-B) NASA Safety Policy and Requirements Document, June
1993

NMI 2410.10B NASA Software Management Assurance and Engineering
Policy, April 20, 1993

SMAP-GB-A201 Software Assurance Guidebook, September 1989

SMAP-GB-A301 Software Quality Assurance Audits Guidebooks, November
1990

2.2 GLOSSARY

A glossary of software safety-related terms is provided in Appendix A.

2.3 ABBREVIATIONS AND ACRONYMS

A list of abbreviations and acronyms is provided in Appendix B.

NASA-STD-8719.13A

4

This page intentionally left blank.

NASA-STD-8719.13A

5

3.0 REQUIREMENTS

3.1 GENERAL

The purpose of the software safety activities is to ensure that software does not cause or
contribute to a system reaching a hazardous state; that it does not fail to detect or take corrective
action if the system reaches a hazardous state; and that it does not fail to mitigate damage if an
accident occurs.

The software safety process shall:

a. Ensure that the system/subsystem safety analyses identify which software is
safety-critical. Any software that has the potential to cause a hazard or is required
to support control of a hazard, as identified by safety analyses, is safety-critical
software.

b. Ensure that the system/subsystem safety analyses clearly identify the key inputs
into the software requirements specification (e.g., identification of hazardous
commands, limits, interrelationship of limits, sequence of events, timing
constraints, voting logic, failure tolerance, etc.).

c. Ensure that the development of the software requirements specification includes
the software safety requirements that have been identified by software safety
analysis.

d. Ensure that the software design and implementation properly incorporate the
software safety requirements.

e. Ensure that the appropriate verification and validation requirements are
established to ensure proper implementation of the software safety requirements.
This explicitly includes an assessment of the scope and level of IV&V to be
planned and implemented based on the level of criticality and risk of the software
application. A statement will be made in either the program/project plan or the
software development plan as to the level of IV&V to be accomplished.

f. Ensure that test plans and procedures will satisfy the intent of the software safety
verification requirements.

g. Ensure that the results of the software safety verification effort are satisfactory.

3.2 SYSTEM SAFETY ANALYSES

Preliminary system safety analyses (e.g., Preliminary Hazard Analysis (PHA)), conducted during
the system requirements phase when the role of software is being defined, begin to identify the
hazards associated with a particular design concept and/or operation. These preliminary analyses

NASA-STD-8719.13A

6

and subsequent system and software safety analyses identify when software is a potential cause
of a hazard or will be used to support the control of a hazard. This software shall be classified as
safety-critical and shall be subjected to software safety analysis. Safety-critical software is
typically software that if not performed or is performed incorrectly, inadvertently, or out of
sequence could result in a hazard or allow a hazardous condition to exist, such as (1) software
that exercises direct command and control over potentially hazardous functions and/or hardware,
(2) software that monitors critical hardware components, and/or (3) software that monitors the
system for possible critical conditions and/or states.

The system safety analyses are the first place to identify software safety requirements necessary
to support the development of the software requirements specification. These requirements shall
be provided to the developer for inclusion into the software requirements document. Some
examples of software safety requirements include limits (e.g., redlines, boundary values),
sequence of events, timing constraints, interrelationship of limits, voting logic, hazardous
hardware failure recognition, failure tolerance, caution and warning interfaces, hazardous
commands, etc.

The system safety analyses continue throughout the project life cycle. The software safety
analysis process needs to continue to review the results of the systems analyses to assure that
changes and findings at the system level are incorporated into the software as necessary. In
addition, the software safety analyses provide input to the system safety analyses. The software
safety analyses are a special portion of the overall system safety analyses and are not conducted
in isolation.

3.3 SOFTWARE SAFETY

Software safety shall be an integral part of the overall system safety and software development
efforts. It is the objective of the software safety effort to ensure that safety is considered
throughout the software life cycle. Therefore, software safety activities take place in every phase
of the system and software development life cycle beginning as early as the concept phase and on
through to operations and maintenance. Up-front participation, analyses, and subsequent
reporting of safety problems found during the software development life cycle facilitates timely
and less costly solutions.

Software safety requires a coordinated effort among all organizations involved in the
development of NASA software. This includes Program Managers, hardware and software
designers, safety analysts, quality assurance, and operations personnel. Those conducting the
Software Safety effort shall also interface with personnel from disciplines such as reliability,
security, Independent Verification and Validation (IV&V) (when available), and human factors.

3.3.1 SOFTWARE SAFETY TASKS BY LIFE CYCLE PHASE

The following subsections describe which software safety tasks are appropriate for each software
development life cycle phase, using the waterfall life cycle as the primary life cycle
methodology. Many of the safety analyses are iterative, taking place during the software

NASA-STD-8719.13A

7

development life cycle (i.e., the results from one phase feed the analyses of the next). As the
detail of the project evolves, so does the maturity of the safety analysis.

3.3.1.1 SOFTWARE SAFETY PLANNING

Software safety planning shall be done for each software acquisition to which this standard is
applied. The planning shall be documented in the required Software Management Plan or Safety
Management Plan. The Software Management Plan shall be formatted in accordance with the
Software Management Plan DID in NASA-STD-2100-91 "NASA Software Documentation
Standard." The Safety Management Plan shall be documented in accordance with Section 306 of
NHB 1700.1 (V1-B). If the safety planning is documented in multiple plans, each plan shall
include a cross-reference to the safety activities in the remaining plans. The plan shall describe
how the activities specified by this standard will be implemented. The plan shall specify the
activities to be carried out, the schedule on which they will be implemented, and the products
that will result. The plan shall address the interrelationships among system safety analysis,
software safety analysis, and the software development efforts. The plan shall specifically
address the mechanism by which safety-critical requirements are generated, implemented,
tracked, and verified.

3.3.1.2 SOFTWARE REQUIREMENTS SPECIFICATION DEVELOPMENT

During the software requirements specification development, the system-level requirements
allocated to software are analyzed and documented as software requirements. Test planning is
begun, with a method for verifying each requirement identified and included in a preliminary test
plan. Risks are identified and risk management control mechanisms are established. Two
software safety tasks shall be performed in this phase of the software development life cycle:

a. Development of software safety requirements.

b. Analysis of the software requirements for potential hazards.

The successful development of safety requirements for the software requirements specification is
essential to developing safe software and allows for safety to be built into the software early in
the life cycle while it is relatively inexpensive. The process of development of software safety
requirements involves analysis of system safety requirements, hardware, software, and user
interfaces, and areas of system performance where software is a potential cause of a hazard or
supports control of a hazard identified by the system safety analyses. These system
requirements, interfaces, and areas of performance shall be analyzed to develop the software
requirements necessary to ensure that the related hazards are properly resolved. The developed
software safety requirements shall become part of the software requirements specification. The
software safety requirements shall be consistent with the precedence specified in Section 102.f of
NHB 1700.1 (V1-B) and the Risk Assessment approach specified in Section 108 of NHB 1700.1
(V1-B).
The software safety requirements analysis shall follow the requirements given in Section 3.4.1.

NASA-STD-8719.13A

8

3.3.1.3 SOFTWARE ARCHITECTURAL DESIGN

The software architectural design process develops the high-level design that will implement the
software requirements. All software safety requirements developed in Section 3.3.1.2 shall be
incorporated into the high-level software design as part of this process. The design process shall
include identification of safety design features and methods (e.g., inhibits, traps, interlocks, and
assertions) that will be used throughout the software to implement the software safety
requirements. Safety-specific coding standards will also be developed that identify requirements
for annotation of safety-critical code and limitation on use of certain language features that can
reduce software safety. After allocation of the software safety requirements to the software
design, component level Safety-Critical Computer Software Components (SCCSCs) shall be
identified. These are all software components that implement software safety requirements or
components that interface with SCCSCs that can affect their output.

During this phase, test planning to verify the correct implementation of the software safety
requirements shall be completed. This planning shall include identification of tests that will be
used to verify all software safety requirements and evaluate the correct response of the software
to potential hazards. The safety activity shall review for concurrence the test plan.

Analysis shall be performed on the architectural design and test plan in accordance with Section
3.4.2.

3.3.1.4 SOFTWARE DETAILED DESIGN

The software detailed design process develops the low-level design for the software units that
will implement the software requirements and high-level design. As part of the process, the
high-level design for component level SCCSCs, including the safety design features and
methods, shall be developed into a low level unit design. After development of the detail design,
unit-level SCCSCs shall be identified. These SCCSCs are all software units that implement
software safety requirements or units that interface with SCCSCs that can affect their output.

During this phase, safety-related information shall be incorporated into all user manuals. This
information includes cautions, warnings, and procedures for handling safety-related procedures
and hazards.

Test procedures that verify the software safety requirements shall be developed during this phase.
 The safety-related procedures shall include, but not be limited to, negative, no-go, off-nominal,
and stress testing to ensure that the software responds correctly to hazards and does not initiate
any hazards. These test procedures shall support Computer Software Configuration Item (CSCI),
system and acceptance level testing. The safety activity shall review for concurrence the test
procedures.

NASA-STD-8719.13A

9

Analysis shall be performed on the detailed design to identify potential hazards and test
procedures to ensure incorporation of safety-related testing in accordance with Section 3.4.3.

3.3.1.5 SOFTWARE IMPLEMENTATION

The software implementation translates the detailed design into code in the selected
programming language. The code shall implement the safety design features and methods
developed during the design process. Safety-critical code shall be commented in such a way that
future changes can be made with a reduced likelihood of invoking a hazardous state. Analysis
shall be performed on the code to identify potential hazards in accordance with Section 3.4.4.

The correct implementation of software safety requirements in the unit-level SCCSCs shall be
verified to ensure accuracy and compliance with software engineering and safety detailed design
requirements. Verification of each code unit must be completed prior to the unit’s incorporation
in the main code package.

Integration and acceptance test procedures that verify the software safety requirements shall be
completed during this phase. The safety activity shall review for concurrence the completed test
procedures.

Analysis shall be performed on test procedures to verify incorporation of safety-related testing in
accordance with Section 3.4.4.

3.3.1.6 SOFTWARE INTEGRATION AND ACCEPTANCE TESTING

Testing shall be performed to verify correct incorporation of software safety requirements.
Testing must show that hazards have been eliminated or controlled to an acceptable level of risk.
 Additional hazardous states identified during testing shall undergo complete analysis prior to
software delivery or use. Software safety testing of SCCSCs shall be included in the integration
and acceptance tests. Acceptance testing shall verify correct operation of the SCCSCs in
conjunction with system hardware and operators. It shall verify correct operation during stress
conditions and in the presence of system faults.

Analysis shall be performed on the test results in accordance with Section 3.4.5.

3.3.1.7 SOFTWARE OPERATIONS AND MAINTENANCE

The software safety processes defined in this section to specify, develop, analyze, and test
SCCSCs shall be used when changes are made. The activities shall include: performing a hazard
analysis, updating the software safety requirements; identifying new SCCSCs; updating the
specification, design, and operator documentation for SCCSCs; updating and adding comments
for safety-critical code; and testing the SCCSCs. Testing shall include regression testing to
verify correct implementation of related software safety requirements.

NASA-STD-8719.13A

10

3.3.2 PHASE INDEPENDENT TASKS

The following subsections describe those software safety tasks that are accomplished throughout
the life cycle.

3.3.2.1 SAFETY REQUIREMENTS TRACEABILITY

A system shall be used to trace the flow down of the software safety requirements to design,
implementation, and test. The tracing system shall also map the relationships between software
safety requirements and system hazard reports.

3.3.2.2 DISCREPANCY REPORTING AND TRACKING

A system shall be used for closed-loop tracking of safety-related discrepancies, problems, and
failures in baselined software products. All discrepancy reports shall be reviewed for safety
impacts, with the safety activity’s concurrence on safety-related discrepancy report closures.
Analysis of changes made to correct discrepancies shall be performed in accordance with Section
3.4.6.

3.3.2.3 SOFTWARE CHANGE CONTROL

All changes, modifications, and patches made to the SCCSC requirements, design, code,
systems, equipment, test plans, procedures, or criteria shall be evaluated to determine the effect
of the proposed change on system/subsystem safety. The analysis shall be performed in
accordance with Section 3.4.6.

3.3.2.4 SAFETY PROGRAM REVIEWS

Safety program reviews shall be conducted to ensure that implementation of safety controls of
hazards are adequate. The software safety activity shall support the system safety review
process.

3.4 SOFTWARE SAFETY ANALYSIS

The following sections provide a systematic approach for software safety analysis. They support
the software safety process described in Section 3.3.

3.4.1 SOFTWARE SAFETY REQUIREMENTS ANALYSIS

A Software Safety Requirements Analysis (SSRA) shall be performed and documented. The
system-level PHA and the system conceptual design shall be used as input to the

SSRA. The SSRA shall examine system-level software requirements, interface control
documents, and the ongoing software requirements specification development to:

a. Identify software requirements that are safety critical.

NASA-STD-8719.13A

11

b. Ensure the correctness and completeness of the decomposition of the high level
safety requirements.

c. Provide safety-related recommendations for the design and testing process.

Analysis of all software requirements shall be performed in order to identify additional hazards
that the system analysis did not include and to identify areas where system or interface
requirements were not correctly assigned to the software. Identified hazards shall then be
addressed by adding or changing the interfaces, system requirements, and/or software
requirements. The SSRA shall consider such specific requirements as specific limit ranges; out-
of-sequence event protection requirements (e.g., "if-then" statements); timers; relationship logic
for interdependent limits; voting logic; hazardous command processing requirements; Fault
Detection, Isolation, and Recovery (FDIR); and switchover logic for failure tolerance.

Output of the SSRA shall be used as input to follow-on software safety analyses. The SSRA
shall be presented at the Software Requirements Review (SRR)/Software Specification Review
(SSR) and system-level safety reviews. The results of the SSRA shall be provided to the
ongoing system safety analysis activity.

3.4.2 SOFTWARE SAFETY ARCHITECTURAL DESIGN ANALYSIS

A Safety Architectural Design Analysis (SADA) shall be performed and documented. The
Architectural Design, the results of the SSRA, and the system hazard analyses shall be used as
inputs to the SADA. The SADA shall examine the software requirements specification, test
plan, and the ongoing architectural design to:

a. Identify as SCCSCs those software components that implement the software
safety requirements identified by the SSRA. Those software components that are
found to affect the output of SCCSCs shall also be identified as SCCSCs.

b. Ensure the correctness and completeness of the architectural design as related to
the software safety requirements and safety-related design recommendations.

c. Provide safety-related recommendations for the detailed design.

d. Ensure test coverage of the software safety requirements and provide
recommendations for test procedures.

The output of the SADA shall be used as input to follow-on software safety analyses. The
SADA shall be presented at the software Preliminary Design Review (PDR) and system-level
safety reviews. The results of the SADA shall be provided to the ongoing system safety analysis
activity.

3.4.3 SOFTWARE SAFETY DETAILED DESIGN ANALYSIS

NASA-STD-8719.13A

12

A Safety Detailed Design Analysis (SDDA) shall be performed and documented. The Detailed
Design, the results of the SSRA and SADA, and the system hazard analyses shall be used as
inputs to the SDDA. The SDDA shall examine the software requirements specification, test
procedures, and the ongoing detailed design to:

a. Refine the identification of SCCSCs to the unit level software components that
implement the software safety requirements identified by the SSRA. Those unit-
level software components that are found to affect the output of SCCSCs shall
also be identified as SCCSCs.

b. Ensure the correctness and completeness of the detailed design as related to the
software safety requirements, architectural design, and safety-related design
recommendations.

c. Provide safety-related recommendations for code implementation.

d. Ensure test coverage of software safety requirements.

e. Develop safety-related information for inclusion in the User’s Guide and other
appropriate documentation.

The output of the SDDA shall be used as input to follow-on software safety analyses. The
SDDA shall be presented at the software Critical Design Review (CDR) and system-level safety
reviews. The results of the SDDA shall be provided to the ongoing system safety analysis
activity.

3.4.4 CODE SAFETY ANALYSIS

A Code Safety Analysis (CSA) shall be performed and documented. The code, the results of the
SSRA, SADA, and SDDA, and the system hazard analyses shall be used as inputs to the CSA.
The CSA shall examine the software requirements specification, test procedures, and the ongoing
code development to:

a. Ensure the correctness and completeness of the code as related to the software
safety requirements, detailed design, and safety-related coding recommendations.

b. Identify potentially unsafe states caused by input/output timing, multiple events,
out-of-sequence events, failure of events, adverse environments, deadlocking,
wrong events, inappropriate magnitude, improper polarity, and hardware failure
sensitivities, etc.

c. Ensure that SCCSCs are adequately commented.

d. Ensure test coverage of software safety requirements

NASA-STD-8719.13A

13

e. Update safety-related information for inclusion in the User’s Guide and other
appropriate documentation.

The status of the software safety analysis shall be presented at the Test Readiness Review (TRR).
 The results of the CSA shall be provided to the ongoing system safety analysis activity.

3.4.5 SOFTWARE TEST SAFETY ANALYSIS

The test results shall be analyzed to verify that all safety requirements have been satisfied. The
analysis shall also verify that all identified hazards have been eliminated or controlled to an
acceptable level of risk. The results of the test safety analysis shall be provided to the ongoing
system safety analysis activity.

3.4.6 SOFTWARE CHANGE ANALYSIS

Software change analysis shall evaluate whether the proposed change could invoke a hazardous
state, affect a hazard control, increase the likelihood of a hazardous state, adversely affect
safety-critical software, or change the criticality of a software component. The analysis shall
also ensure that any affected documentation is updated to correctly reflect any safety-related
changes that have been made.

NASA-STD-8719.13A

14

This page intentionally left blank.

NASA-STD-8719.13A

15

4.0 QUALITY ASSURANCE PROVISIONS

Quality Assurance (QA) shall assure:

a. Software safety planning is performed, approved, and implemented.

b. Technical recommendations resulting from software safety activities are reviewed,
considered by change control authority, and where appropriate, implemented.

c. Reviews and audits address software safety concerns, requirements, and
guidelines.

d. Software safety processes, product standards, and procedures are followed and
met.

QA shall observe key elements of tasks performed to verify proper execution of approved plans
and procedures.

NASA-STD-8719.13A

16

This page intentionally left blank.

NASA-STD-8719.13A

17

5.0 PACKAGING

This section is not applicable to this standard.

NASA-STD-8719.13A

18

This page intentionally left blank.

NASA-STD-8719.13A

19

6.0 ADDITIONAL INFORMATION

This section is not applicable to this standard.

NASA-STD-8719.13A

20

This page intentionally left blank.

NASA-STD-
8719.13A

A-1

APPENDIX A

GLOSSARY

Various definitions contained in this Glossary are reproduced from IEEE Standard 610.12-1990,
IEEE Standard Glossary of Software Engineering Terminology, copyright 81990 by the
Institute of Electrical and Electronic Engineers, Inc. The IEEE takes no responsibility for and
will assume no liability for damages resulting from the reader’s misinterpretation of said
information resulting from the placement and context in this publication. Information is
reproduced with the permission of the IEEE.

Assertions. A logical expression specifying a program state that must exist or a set of conditions
that program variables must satisfy at a particular point during a program execution. Types
include input assertion, loop assertion, and output assertion. (IEEE Standard 610.12-1990)

Code Safety Analysis (CSA). An analysis of program code and system interfaces for events,
faults, and conditions that could cause or contribute to undesirable events affecting safety.

Command. Any message that causes the receiving party to perform an action.

Computer Software Configuration Item (CSCI). An aggregate of software that is designated
for configuration management and is treated as a single entity in the configuration management
process. (IEEE Standard 610.12-1990)

Concept/Conceptual. The period of time in the software development cycle during which the
user needs are described and evaluated through documentation (for example, statement of needs,
advance planning report, project initiation memo, feasibility studies, system definition,
documentation, regulations, procedures, or policies relevant to the project).

Critical Design Review (CDR). A review conducted to verify that the detailed design of one or
more configuration items satisfy specified requirements; to establish the compatibility among
configuration items and other items of equipment, facilities, software, and personnel; to assess
risk areas for each configuration item; and, as applicable, to assess the results of the producibility
analyses, review preliminary hardware product specifications, evaluate preliminary test planning,
and evaluate the adequacy of preliminary operation and support documents. (IEEE Standard
610.12-1990)

For Computer Software Configuration Items (CSCIs), this review will focus on the determination
of the acceptability of the detailed design, performance, and test characteristics of the design
solution, and on the adequacy of the operation and support documents.

Deadlock. A situation in which computer processing is suspended because two or more devices
or processes are each awaiting resources assigned to the other. (IEEE Standard 610.12-1990)

NASA-STD-8719.13A

A-2

Failure. The inability of a system or component to perform its required functions within
specified performance requirements. (IEEE Standard 610.12-1990)

Failure Tolerance. The ability of a system or subsystem to perform its function(s) or maintain
control of a hazard in the presence of failures within its hardware, firmware, or software.

Fault. Any change in state of an item that is considered to be anomalous and may warrant some
type of corrective action. Examples of faults included device errors reported by Built-In Test
(BIT)/Built-In Test Equipment (BITE), out-of-limits conditions on sensor values, loss of
communication with devices, loss of power to a device, communication error on bus transaction,
software exceptions (e.g., divide by zero, file not found), rejected commands, measured
performance values outside of commanded or expected values, an incorrect step, process, or data
definition in a computer program, etc. Faults are preliminary indications that a failure may have
occurred.

Fault Detection. A process that discovers or is designed to discover faults; the process of
determining that a fault has occurred.

Fault Isolation. The process of determining the location or source of a fault.

Fault Recovery. A process of elimination of a fault without permanent reconfiguration.

Firmware. Computer programs and data loaded in a class of memory that cannot be
dynamically modified by the computer during processing.

Hazard. Existing or potential condition that can result in or contribute to a mishap.

Hazardous Command. A command whose execution (including inadvertent, out-of-sequence,
or incorrectly executed) could lead to an identified critical or catastrophic hazard, or a command
whose executions can lead to a reduction in the control of a hazard (including reduction in failure
tolerance against a hazard or the elimination of an inhibit against a hazard).

Independent Verification and Validation (IV&V). A process whereby the products of the
software development life cycle phases are independently reviewed, verified, and validated by an
organization that represents the acquirer of the software and is completely independent of the
provider.

Inhibit. A design feature that provides a physical interruption between an energy source and a
function (e.g., a relay or transistor between a battery and a pyrotechnic initiator, a latch valve
between a propellant tank and a thruster, etc.).

Interlock. Hardware or software function that prevents succeeding operations when specific
conditions exist.

NASA-STD-
8719.13A

A-3

Life Cycle. The period of time that starts when a software product is conceived and ends when
the software is no longer available for use. The software life cycle traditionally has eight phases:
Concept and Initiation; Requirements; Architectural Design; Detailed Design; Implementation;
Integration and Test; Acceptance and Delivery; and Sustaining Engineering and Operations.

Mishap. An unplanned event or series of events that results in death, injury, occupational
illness, or damage to or loss of equipment, property, or damage to the environment; an accident.

Negative Testing. Software Safety Testing to ensure that the software will not go to a hazardous
state or generate outputs that will create a hazard in the system in response to out of bound or
illegal inputs.

No-Go Testing. Software Safety Testing to ensure that the software performs known processing
and will go to a known safe state in response to specific hazardous situations.

Preliminary Design Review (PDR). A review conducted to evaluate the progress, technical
adequacy, and risk resolution of the selected design approach for one or more configuration
items; to determine each design’s compatibility with the requirements for the configuration item;
to evaluate the degree of definition and assess the technical risk associated with the selected
manufacturing methods and processes; to establish the existence and compatibility of the
physical and functional interfaces among the configuration items and other items of equipment,
facilities, software, and personnel; and as appropriate, to evaluate the preliminary operation and
support documents. (IEEE Standard 610.12-1990)

For CSCIs, the review will focus on: (1) the evaluation of the progress, consistency, and
technical adequacy of the selected architectural design and test approach, (2) compatibility
between software requirements and architectural design, and (3) the preliminary version of the
operation and support documents.

Preliminary Hazard Analysis (PHA). Analysis performed at the system level to identify
safety-critical areas, to provide an initial assessment of hazards, and to identify requisite hazard
controls and follow-on actions.

Risk. As it applies to safety, exposure to the chance of injury or loss. It is a function of the
possible frequency of occurrence of the undesired event, of the potential severity of resulting
consequences, and of the uncertainties associated with the frequency and severity.

Safety Analysis. A systematic and orderly process for the acquisition and evaluation of specific
information pertaining to the safety of a system.

Safety Architectural Design Analysis (SADA). Analysis performed on the high-level design to
verify the correct incorporation of safety requirements and to analyze the Safety-Critical
Computer Software Components (SCCSCs).

NASA-STD-8719.13A

A-4

Safety-Critical. Those software operations that, if not performed, performed out-of sequence, or
performed incorrectly could result in improper control functions (or lack of control functions
required for proper system operation) that could directly or indirectly cause or allow a hazardous
condition to exist.

Safety-Critical Computer Software Component (SCCSC). Those computer software
components (processes, modules, functions, values or computer program states) whose errors
(inadvertent or unauthorized occurrence, failure to occur when required, occurrence out of
sequence, occurrence in combination with other functions, or erroneous value) can result in a
potential hazard, or loss of predictability or control of a system.

Safety-Critical Software. Software that: (1) Exercises direct command and control over the
condition or state of hardware components; and, if not performed, performed out-of-sequence, or
performed incorrectly could result in improper control functions (or lack of control functions
required for proper system operation), which could cause a hazard or allow a hazardous condition
to exist. (2) Monitors the state of hardware components; and, if not performed, performed out-
of-sequence, or performed incorrectly could provide data that results in erroneous decisions by
human operators or companion systems that could cause a hazard or allow a hazardous condition
to exist. (3) Exercises direct command and control over the condition or state of hardware
components; and, if performed inadvertently, out-of-sequence, or if not performed, could, in
conjunction with other human, hardware, or environmental failure, cause a hazard or allow a
hazardous condition to exist.

Safety Detailed Design Analysis (SDDA). Analysis performed on Safety-Critical Computer
Software Components to verify the correct incorporation of safety requirements and to identify
additional hazardous conditions.

Software Requirements Review (SRR). A review of the requirements specified for one or
more software configuration items to evaluate their responsiveness to and interpretation of
system requirements and to determine whether they form a satisfactory basis for proceeding into
a preliminary (architectural) design of configuration items. (IEEE Standard 610.12-1990)

Same as Software Specification Review for DoD-STD-2167A.

Software Requirements Specification (SRS). Documentation of the essential requirements
(functions, performance, design constraints, and attributes) of the software and its external
interfaces. (IEEE Standard 610.12-1990)

Software Safety Requirements Analysis (SSRA). Analysis performed to examine system and
software requirements and the conceptual design in order to identify unsafe modes for resolution,
such as out-of-sequence, wrong event, deadlocking, and failure-to-command modes.

Software Specification Review (SSR). Same as Software Requirements Review.

Software Safety. The application of the disciplines of system safety engineering techniques
throughout the software life cycle to ensure that the software takes positive measures to enhance

NASA-STD-
8719.13A

A-5

system safety and that errors that could reduce system safety have been eliminated or controlled
to an acceptable level of risk.

System Safety. Application of engineering and management principles, criteria, and techniques
to optimize safety and reduce risks within the constraints of operational effectiveness, time, and
cost throughout all phases of the system life cycle.

Test Readiness Review (TRR). A review conducted to evaluate preliminary test results for one
or more configuration items; to verify that the test procedures for each configuration item are
complete, comply with test plans and descriptions, and satisfy test requirements; and to verify
that a project is prepared to proceed to formal test of the configuration items. (IEEE Standard
610.12-1990)

Trap. Software feature that monitors program execution and critical signals to provide
additional checks over and above normal program logic. Traps provide protection against
undetected software errors, hardware faults, and unexpected hazardous conditions.

Validation. (1) An evaluation technique to support or corroborate safety requirements to ensure
necessary functions are complete and traceable. (2) The process of evaluating software at the end
of the software development process to ensure compliance with software requirements.

Verification. (1) The process of determining whether the products of a given phase of the
software development cycle fulfill the requirements established during the previous phase (see
also validation). (2) Formal proof of program correctness. (3) The act of reviewing, inspecting,
testing, checking, auditing, or otherwise establishing and documenting whether items, processes,
services, or documents conform to specified requirements.

Waiver. A variance that authorizes departure from a particular safety requirement where
alternate methods are employed to mitigate risk or where an increased level of risk has been
accepted by management.

NASA-STD-8719.13A

A-6

This page intentionally left blank.

NASA-STD-
8719.13A

B-1

APPENDIX B

ABBREVIATIONS AND ACRONYMS

BIT Built-In Test
BITE Built-In Test Equipment

CDR Critical Design Review
COTS Commercial Off-the-Shelf
CSA Code Safety Analysis
CSCI Computer Software Configuration Item

DID Data Item Description
DoD Department of Defense

FDIR Fault Detection, Isolation, and Recovery

GFE Government Furnished Equipment

IEEE Institute of Electrical and Electronic Engineers
IV&V Independent Verification and Validation

MIL-STD Military Standard

NHB NASA Handbook
NMI NASA Management Instruction

QA Quality Assurance

PDR Preliminary Design Review
PHA Preliminary Hazard Analysis

SADA Safety Architectural Design Analysis
SCCSC Safety-Critical Computer Software Component
SDDA Safety Detailed Design Analysis
SSRA Software Safety Requirements Analysis
SRR Software Requirements Review
SRS Software Requirements Specification
SSR Software Specification Review

TRR Test Readiness Review

NASA-STD-8719.13A

B-2

This page intentionally left blank.

	http://satc:
	gsfc:
	nasa:
	gov:

